If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-23x-9=0
a = 4; b = -23; c = -9;
Δ = b2-4ac
Δ = -232-4·4·(-9)
Δ = 673
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{673}}{2*4}=\frac{23-\sqrt{673}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{673}}{2*4}=\frac{23+\sqrt{673}}{8} $
| 18+8h=10+10h | | (2x+3)^2-(x-2)^2=5 | | 21x^2+11x=2 | | 2x-4|5=x+4 | | -26x−36=-30 | | 1x-1=1x-0 | | -6(x-4)-2=22 | | -5–6n=-5n | | 7y-6-4y+4=00 | | 5x+12=4x+18 | | 7s+4=5s | | 10y+3=y | | 55+2x+80+61=180 | | |2x-19|=4x+1 | | 4^x-4=0.5^5-2x | | 2x+5(x-3)=2(x-10) | | 27-(x/4)=15 | | 1x+0=3x-0 | | 2(x-1)=4(2x-3) | | 350-7x=644 | | x=+20(2x+2) | | 8x-5.11=-1.43 | | 10x+24-2x-4=4 | | -17+41=-3(x+3) | | 4x+8+2x+2=8x-30 | | 4x+6+4x-4=74 | | 5/2x=98-x | | 15x+92=572 | | 6+20x=-2 | | 7−x+3=9x+10 | | 5x+2x-8=6 | | 2x-3=7x+2 |